

# IMPROVING AEROSOL RETRIEVALS BY USING MULTI-MODAL REPRESENTATIONS OF THE LAND SURFACE REFLECTANCE TIME SERIES: THE MULTIMODAL TEMPORAL AEROSOL RETRIEVAL (MTAR) ALGORITHM



Nathaniel Levitan, Fred Moshary, Barry Gross

Optical Remote Sensing Lab & NOAA-CREST, City College of New York, New York, NY 10031, USA. E-mail: nlevita000@citymail.cuny.edu

#### **Abstract**

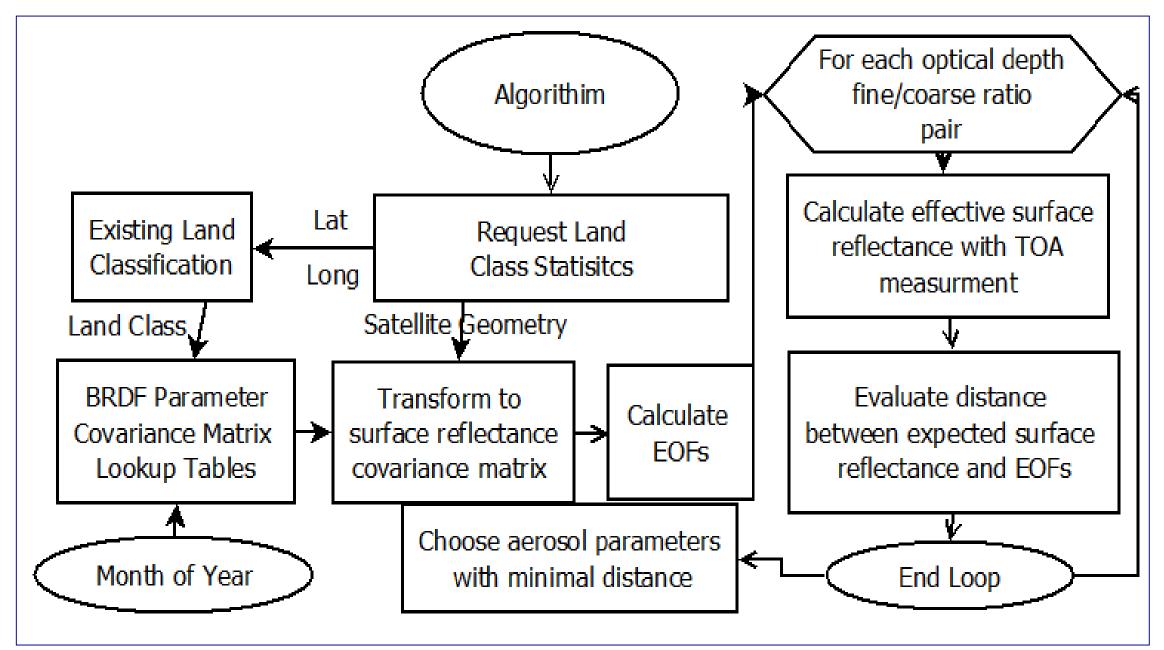
We developed a multi-temporal algorithm to retrieve aerosol from the time series of retrieved surface reflectances. Our previously developed Empirical Orthogonal Functions algorithm is used as a first-guess to retrieve the initial time series of surface reflectances at single pixel resolution (500 m on MODIS). Then, a multi-modal distribution is used to model this time-series and the pixel's BRDF distribution is used to retrieve histograms of the optical depth for each day. In addition, a relaxed minimum reflectivity constraint is borrowed from MAIAC and is used to filter the optical depth histograms. Finally, the optical depth histograms and associated fine/coarse ratio vectors are spatially smoothed using a 7-by-7 filter window to generate the final optical depth product. Some benefits of the algorithm are:

- Large improvement over deserts, such as Solar Village, Saudi Arabia, compared to the MAIAC algorithm, which is the current state-of-the-art multitemporal aerosol algorithm
- Significant improvement over urban areas, such as CCNY, as compared to Dark Target (DT), current NASA operational algorithm for vegetation, and comparable performance to MAIAC
- Has large potential for bright surface retrievals on GOES-R and VIIRS
  - Advantages for both VIIRS and GOES-R in desert because we are outperforming state-of-the-art MAIAC algorithm
  - MAIAC may not be optimal on GOES-R due to the different tradeoff between angular and temporal sampling
  - MTAR algorithm urban performance on GOES-R may exceed that of MAIAC because MTAR algorithm is capable of incorporating large numbers of noisy temporal samples

## Illustration of MAIAC Minimum Reflectivity Constraint

|       | $\tau = 0$ | $\tau = 0.05$ | $\tau = 0.1$ | $\tau = 0.15$ | $\tau = 0.2$ | $\tau = 0.25$ |
|-------|------------|---------------|--------------|---------------|--------------|---------------|
| Day 1 | 0.6        | 0.56          | 0.48         | 0.45          | 0.44         | 0.41          |
| Day 2 | 0.48       | 0.45          | 0.41         | 0.39          | 0.35         | 0.20          |
| Day 3 | 0.56       | 0.48          | 0.45         | 0.41          | 0.27         | 0.10          |
| Day 4 | 0.52       | 0.51          | 0.48         | 0.45          | 0.43         | 0.41          |
| Day 5 | 0.7        | 0.6           | 0.56         | 0.48          | 0.47         | 0.45          |
| -     |            |               |              |               |              |               |

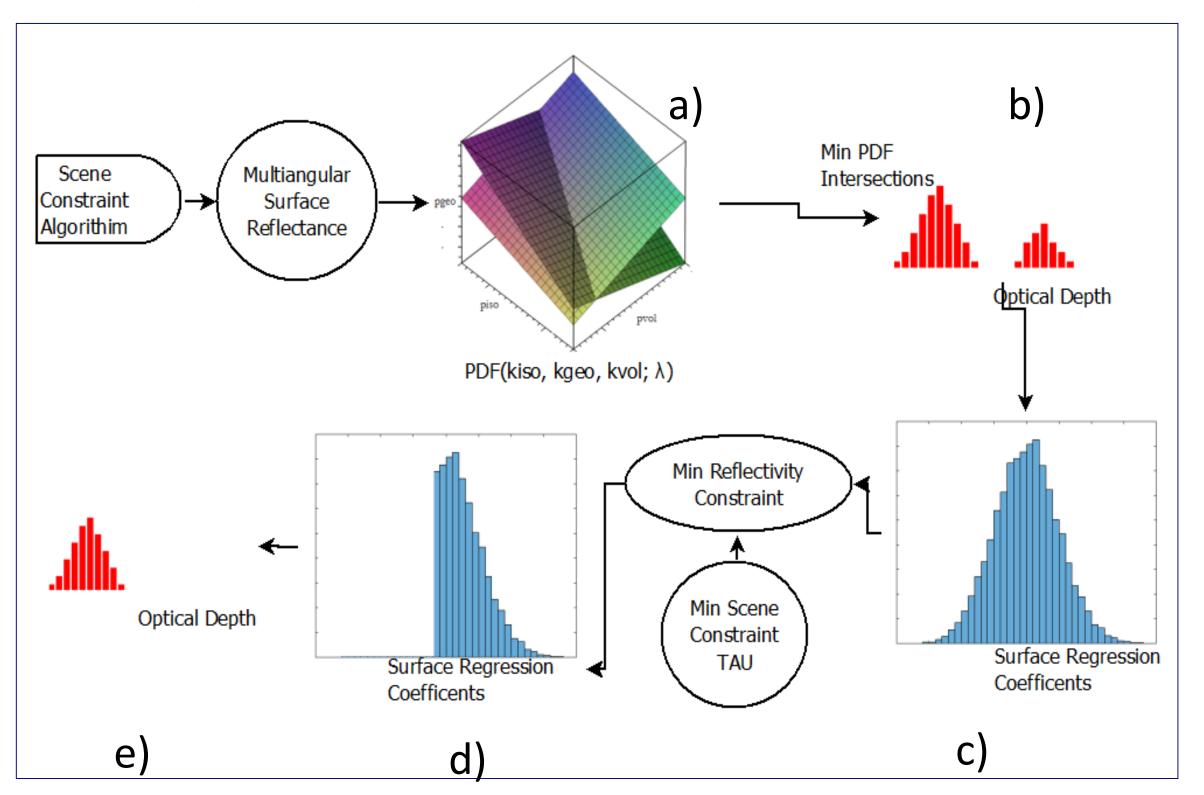
## First-Guess Algorithm Flow Chart (Empirical Orthogonal Functions)



#### **MAIAC Minimum Reflectivity Constraint**

- MAIAC algorithm works by stating that the SRC should remain constant for 16 days and by matching SRC coefficients between days to retrieve days
- For MAIAC, SRC =  $\frac{p_{466}}{}$
- If SRC was determined to be 0.45, retrieved optical depth for each day would be yellow
- SRC determined from clearest day, which has lowest SRC at  $\tau = 0$ . This is Day 2 in the above example. Optical depth on that day  $(\tau_0)$  is determined by increasing it from zero and forward modelling for all days on 20 km box until minimum RMSE is reached
- Once  $\tau_0$  is determined at 20 km, SRCs and optical depths become known at 1 km, which is the resolution of the final product

## **MTAR Algorithm Flowchart**

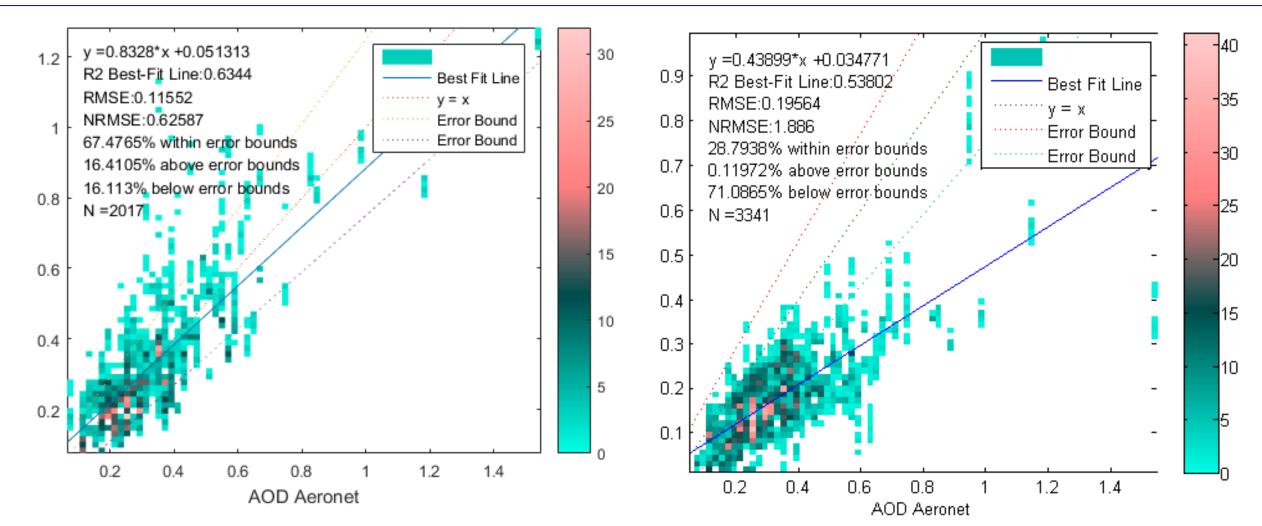


Acknowledgement. This study is partly funded and supported and monitored by The National Oceanic and Atmospheric Administration – Cooperative Science Center for Earth System Sciences and Remote Sensing Technologies (NOAA-CREST) under the Cooperative Agreement Grant #: NA16SEC4810008. The authors would like to thank The City College of New York, NOAA-CREST program and NOAA Office of Education, Educational Partnership Program for the support. The statements contained within the manuscript/research article are not the opinions of the funding agency or the U.S. government, but reflect the author's opinions.

#### **MTAR Algorithm Description**

- Estimate the PDF of each pixel's BRDF by drawing a plane in BRDF parameter space for each historical EOF algorithm retrieved surface reflectance for pixel using  $p_s =$  $k_{iso} + k_{geo}f_{geo} + k_{vol}f_{vol}$
- b) Calculate optical depth histogram and associated fine/coarse ratio vector for each pixel for each day by taking minimum number of maximum PDF intersections for each band for each optical depth bin
- Convert optical depth histograms for each day to SRC histogram for all days
- d) Remove all SRCs less than 90% of effective SRC for minimum EOF retrieved optical depth. This is a relaxed version of MAIAC Minimum Reflectivity Constraint (see above)
- Convert filtered SRC histogram back to optical depth histograms and spatially average in 7x7 windows to get final product. Final product quality controlled by threshold on best optical depth histogram bin value

## Retrieval Results (Solar Village, Saudi Arabia)



Colorbar represents number of points in 2-d bin Figure 1a: Comparison of MTAR algorithm to AERONET at the Solar Village site at 3km resolution for the aerosol optical depth retrieved at 550 nm

Figure 1b: Comparison of MAIAC algorithm to AERONET at the Solar Village site at 3km resolution for the aerosol optical depth retrieved at 550 nm

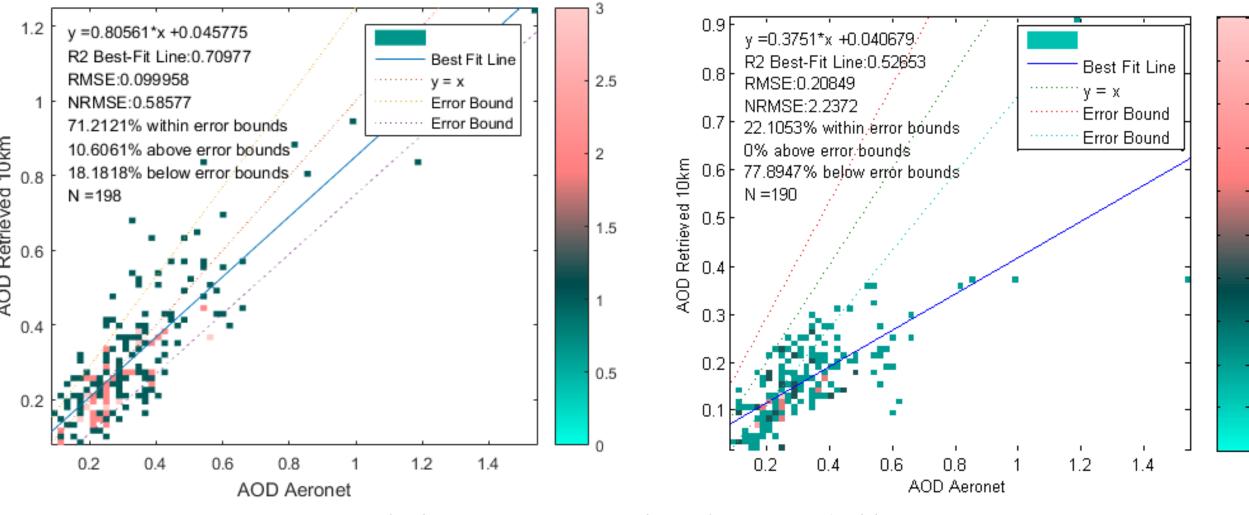


Figure 2a: 10.5 km daily average MTAR aerosol optical depth retrieval versus AERONET on days where more than 70 % of pixels were retrieved by the MTAR algorithm

Colorbar represents number of points in 2-d bin Figure 2b: 10.5 km daily average MAIAC aerosol optical depth retrieval versus AERONET on days where more than 70 % of pixels were retrieved by the MTAR algorithm and the MAIAC algorithm

### Retrieval Results (CCNY) y =1.1403\*x +0.061378 R2 Best-Fit Line:0.80545 R2 Best-Fit Line: 0.81147 Best Fit Line 3.6896% within error bounds 5.1654% above error bounds Error Bound Error Bound Error Bound Error Bound 0.6 0.7 0.5 AOD Aeronet **AOD Aeronet** Figure 3a: 3 km spatially-averaged EOF algorithm Figure 3b: 3 km MODIS DT algorithm versus

versus AERONET at CCNY /=1.0677\*x +-0.00028938 R2 Best-Fit Line: 0.91321 Best Fit Line

Error Bound

Error Bound

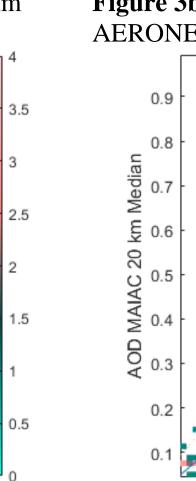
RMSE:0.066815

82.1429% within error bounds

7.1429% below error bounds

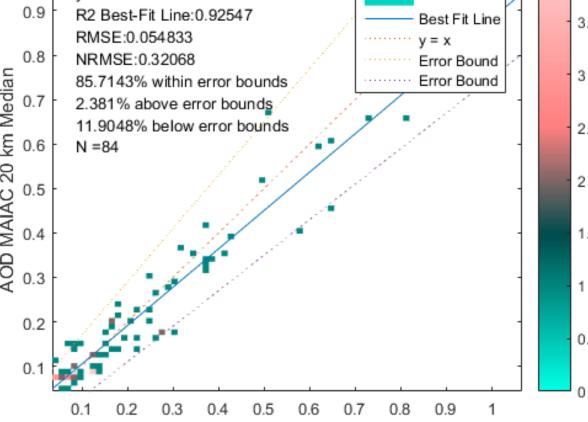
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

**AOD Aeronet** 



**AERONET at CCNY** 

v =0.86374\*x +0.018647



**AOD Aeronet** 

Colorbar represents number of points in 2-d bin

Figure 4b: 20 km median MAIAC aerosol optical depth retrieva Figure 4a: 20 km median MTAR aerosol optical depth versus AERONET when MTAR retrievals were performed retrieval versus AERONET